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PSD-per-unit-time converges to finite values at all frequencies except those where
h(t) has a discrete sine-wave (or cosine-wave) component of finite amplitude. At
those frequencies, it becomes a delta-function, i.e., a sharp spike, whose width gets
narrower and narrower, but whose area converges to be the mean square amplitude
of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function h(t) to work with, but are
given, rather, a list of measurements of h(ti) for a discrete set of ti’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Academic
Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h(t) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let ∆ denote the time interval between
consecutive samples, so that the sequence of sampled values is

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (12.1.1)

The reciprocal of the time interval ∆ is called the sampling rate; if ∆ is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval ∆, there is also a special frequency f c, called the
Nyquist critical frequency, given by

fc ≡ 1
2∆

(12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval ∆. In this case the Nyquist critical frequency is
just the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable
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fact known as the sampling theorem: If a continuous function h(t), sampled at an
interval ∆, happens to be bandwidth limited to frequencies smaller in magnitude than
fc, i.e., if H(f) = 0 for all |f | ≥ fc, then the function h(t) is completely determined
by its samples hn. In fact, h(t) is given explicitly by the formula

h(t) = ∆
+∞∑

n=−∞
hn

sin[2πfc(t − n∆)]
π(t − n∆)

(12.1.3)

This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing
with a signal that is known on physical grounds to be bandwidth limited (or at
least approximately bandwidth limited). For example, the signal may have passed
through an amplifier with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at a rate ∆−1 equal to twice the maximum frequency passed
by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continuous
function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
the frequency range −fc < f < fc is spuriously moved into that range. This
phenomenon is called aliasing. Any frequency component outside of the frequency
range (−fc, fc) is aliased (falsely translated) into that range by the very act of
discrete sampling. You can readily convince yourself that two waves exp(2πif 1t)
and exp(2πif2t) give the same samples at an interval ∆ if and only if f1 and
f2 differ by a multiple of 1/∆, which is just the width in frequency of the range
(−fc, fc). There is little that you can do to remove aliased power once you have
discretely sampled a signal. The way to overcome aliasing is to (i) know the natural
bandwidth limit of the signal — or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might
as well assume) that its Fourier transform is equal to zero outside of the frequency
range in between −fc and fc. Then we look to the Fourier transform to tell whether
the continuous function has been competently sampled (aliasing effects minimized).
We do this by looking to see whether the Fourier transform is already approaching
zero as the frequency approaches fc from below, or −fc from above. If, on the
contrary, the transform is going towards some finite value, then chances are that
components outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from a finite number of its
sampled points. Suppose that we have N consecutive sampled values

hk ≡ h(tk), tk ≡ k∆, k = 0, 1, 2, . . . , N − 1 (12.1.4)
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∆
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Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of time T .
It follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled with a sampling
interval ∆, as in (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist
critical frequency. Power outside that range is folded over or “aliased” into the range. The effect can be
eliminated only by low-pass filtering the original function before sampling.

so that the sampling interval is ∆. To make things simpler, let us also suppose that
N is even. If the function h(t) is nonzero only in a finite interval of time, then
that whole interval of time is supposed to be contained in the range of the N points
given. Alternatively, if the function h(t) goes on forever, then the sampled points are
supposed to be at least “typical” of what h(t) looks like at all other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transform H(f) at all values of f in the range −fc to fc, let us seek estimates
only at the discrete values

fn ≡ n

N∆
, n = −N

2
, . . . ,

N

2
(12.1.5)

The extreme values of n in (12.1.5) correspond exactly to the lower and upper limits
of the Nyquist critical frequency range. If you are really on the ball, you will have
noticed that there are N + 1, not N , values of n in (12.1.5); it will turn out that
the two extreme values of n are not independent (in fact they are equal), but all the
others are. This reduces the count to N .
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The remaining step is to approximate the integral in (12.0.1) by a discrete sum:

H(fn) =
∫ ∞

−∞
h(t)e2πifntdt ≈

N−1∑
k=0

hk e2πifntk∆ = ∆
N−1∑
k=0

hk e2πikn/N

(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final equality. The final
summation in equation (12.1.6) is called the discrete Fourier transform of the N
points hk. Let us denote it by Hn,

Hn ≡
N−1∑
k=0

hk e2πikn/N (12.1.7)

The discrete Fourier transform maps N complex numbers (the h k’s) into N complex
numbers (the Hn’s). It does not depend on any dimensional parameter, such as the
time scale ∆. The relation (12.1.6) between the discrete Fourier transform of a set
of numbers and their continuous Fourier transform when they are viewed as samples
of a continuous function sampled at an interval ∆ can be rewritten as

H(fn) ≈ ∆Hn (12.1.8)

where fn is given by (12.1.5).
Up to now we have taken the view that the index n in (12.1.7) varies from−N/2

to N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodic in n, with
period N . Therefore, H−n = HN−n n = 1, 2, . . . . With this conversion in mind,
one generally lets the n in Hn vary from 0 to N − 1 (one complete period). Then n
and k (in hk) vary exactly over the same range, so the mapping of N numbers into
N numbers is manifest. When this convention is followed, you must remember that
zero frequency corresponds to n = 0, positive frequencies 0 < f < f c correspond
to values 1 ≤ n ≤ N/2− 1, while negative frequencies −fc < f < 0 correspond to
N/2+1 ≤ n ≤ N−1. The value n = N/2 corresponds to both f = fc and f = −fc.

The discrete Fourier transform has symmetry properties almost exactly the same
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we read hk for h(t), Hn for H(f), and HN−n

for H(−f). (Likewise, “even” and “odd” in time refer to whether the values h k at k
and N − k are identical or the negative of each other.)

The formula for the discrete inverse Fourier transform, which recovers the set
of hk’s exactly from the Hn’s is:

hk =
1
N

N−1∑
n=0

Hn e−2πikn/N (12.1.9)

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer by N . This means that a
routine for calculating discrete Fourier transforms can also, with slight modification,
calculate the inverse transforms.
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The discrete form of Parseval’s theorem is

N−1∑
k=0

|hk|2 =
1
N

N−1∑
n=0

|Hn|2 (12.1.10)

There are also discrete analogs to the convolution and correlation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.
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12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W ≡ e2πi/N (12.2.1)

Then (12.1.7) can be written as

Hn =
N−1∑
k=0

Wnkhk (12.2.2)

In other words, the vector of hk’s is multiplied by a matrix whose (n, k)th element
is the constant W to the power n × k. The matrix multiplication produces a vector
result whose components are the Hn’s. This matrix multiplication evidently requires
N2 complex multiplications, plus a smaller number of operations to generate the
required powers of W . So, the discrete Fourier transform appears to be an O(N 2)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log2 N) operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log2 N and N 2 is immense.
With N = 106, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from the work
of J.W. Cooley and J.W. Tukey. Retrospectively, we now know (see [1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length N can be rewritten as the sum of two
discrete Fourier transforms, each of length N/2. One of the two is formed from the


